Discussion 4 Worksheet
 Vectors

Date: 9/3/2021
MATH 53 Multivariable Calculus

1 Dot Products

1. If \vec{u} and \vec{v} are unit vectors in \mathbb{R}^{3} and $u \circ v=-1$, what is the angle between \vec{u} and \vec{v} ?
2. Find three nonzero vectors in \mathbb{R}^{3} that are perpendicular to $\langle 1,3,2\rangle$.
3. Let P be a vertex on a cube. Let Q be an adjacent vertex and let R be the vertex opposite to P. Using dot products, find the angle between the vectors $\overrightarrow{P Q}$ and $\overrightarrow{P R}$.
4. If \vec{u} and \vec{v} are unit vectors in \mathbb{R}^{3}, show that the vectors $\vec{u}+\vec{v}$ and $\vec{v}-\vec{v}$ are perpendicular.
5. Derive the polarization identity: if \vec{u} and \vec{v} are vectors in \mathbb{R}^{3}, then $\vec{u} \circ \vec{v}=\frac{1}{4}\left(|\vec{u}+\vec{v}|^{2}-|\vec{u}-\vec{v}|^{2}\right)$. Hint: it is simplest not to work straight from the definition of the dot product (although this will work too).

2 Challenge: Parallelogram Law

Consider a parallelogram with side lengths a and b, and diagonals of lengths c and d. Show that $2 a^{2}+2 b^{2}=c^{2}+d^{2}$. Hint: use vector geometry and dot products.

3 Vector and Scalar Projections

1. For each of the following pairs of vectors, find the vector projection of \vec{v} onto \vec{w} and the scalar projection of \vec{v} onto \vec{w}.
a) $\vec{v}=\langle 2,4\rangle, \vec{w}=\langle 3,1\rangle$.
b) $\vec{v}=\langle 5,-1\rangle, \vec{w}=\langle 2,9\rangle$.
c) $\vec{v}=\langle-6,3,2\rangle, \vec{w}=\langle 1,-5,3\rangle$.
2. Find formulas for the vector and scalar projections of a vector \vec{v} onto \vec{w} involving the cosine of the angle θ between \vec{v} and \vec{w}.

4 Cross Product Computations

Find the cross products $\vec{v} \times \vec{w}$ of the following pairs of vectors.

1. $\vec{v}=\langle 2,3,1\rangle, \vec{w}=\langle-1,2,3\rangle$.
2. $\vec{v}=6 \vec{i}-4 \vec{j}-3 \vec{j}, \vec{w}=4 \vec{i}+\vec{j}$.
3. \vec{v} pointing a distance 5 units in the positive x-direction, \vec{w} a unit vector lying in the first quadrant of the $x y$-plane and making an angle of $\pi / 4$ with the x-axis.

5 Cross Product Concepts and Applications

1. Given vectors \vec{v} and \vec{w}, find an identity which relates the four quantities $|\vec{v}|,|\vec{w}|,|\vec{v} \times \vec{w}|$, and $|\vec{v} \cdot \vec{w}|$. (Hint: Consider any relevant trigonometric identities.)
2. Let \vec{u} and \vec{v} be nonzero vectors with $\vec{u} \times \vec{v}=\overrightarrow{0}$. What can you say about the relationship between \vec{u} and \vec{v} ?
3. Find the area of the triangle with two sides given by the vectors $\vec{v}=\langle 1,2\rangle$ and $\vec{w}=\langle-3,4\rangle$.

6 Challenge: BAC-CAB

Prove the "BAC-CAB" / "double-crossing" rule:

$$
\vec{a} \times(\vec{b} \times \vec{c})=\vec{b}(\vec{a} \cdot \vec{c})-\vec{c}(\vec{a} \cdot \vec{b}) .
$$

(NOTE: Typically scalars such as $\vec{a} \cdot \vec{c}$ are written on the left in scalar multiplication. This formula is a rare exception and is written this way because "BAC-CAB" is easier to remember than "ACBABC.")

7 True/False

Supply convincing reasoning for your answer.
(a) T F If you take a cross product of two vectors lying in the $x y$-plane, your result will point along the z-axis.
(b) T F The cross product makes sense for vectors in any number of dimensions.
(c) T F The absolute value of the scalar projection of a vector \vec{v} onto another vector \vec{w} is equal to the norm of the vector projection of \vec{v} onto \vec{w}.
(d) $\mathrm{T} F$ The cross product is associative: $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) \times \vec{c}$.
(e) T F The dot and cross products satisfy $\vec{a} \cdot(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{b}) \times \vec{c}$.

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.

