Discussion 4 Worksheet

Vectors

Date: 9/3/2021

MATH 53 Multivariable Calculus

1 Dot Products

- 1. If \vec{u} and \vec{v} are unit vectors in \mathbb{R}^3 and $u \circ v = -1$, what is the angle between \vec{u} and \vec{v} ?
- 2. Find three nonzero vectors in \mathbb{R}^3 that are perpendicular to $\langle 1, 3, 2 \rangle$.
- 3. Let P be a vertex on a cube. Let Q be an adjacent vertex and let R be the vertex opposite to P. Using dot products, find the angle between the vectors \overrightarrow{PQ} and \overrightarrow{PR} .
- 4. If \vec{u} and \vec{v} are unit vectors in \mathbb{R}^3 , show that the vectors $\vec{u} + \vec{v}$ and $\vec{v} \vec{v}$ are perpendicular.
- 5. Derive the *polarization identity*: if \vec{u} and \vec{v} are vectors in \mathbb{R}^3 , then $\vec{u} \circ \vec{v} = \frac{1}{4} \left(|\vec{u} + \vec{v}|^2 |\vec{u} \vec{v}|^2 \right)$. Hint: it is simplest not to work straight from the definition of the dot product (although this will work too).

2 Challenge: Parallelogram Law

Consider a parallelogram with side lengths a and b, and diagonals of lengths c and d. Show that $2a^2 + 2b^2 = c^2 + d^2$. Hint: use vector geometry and dot products.

3 Vector and Scalar Projections

- 1. For each of the following pairs of vectors, find the vector projection of \vec{v} onto \vec{w} and the scalar projection of \vec{v} onto \vec{w} .
 - a) $\vec{v} = \langle 2, 4 \rangle, \ \vec{w} = \langle 3, 1 \rangle.$
 - b) $\vec{v} = \langle 5, -1 \rangle, \ \vec{w} = \langle 2, 9 \rangle.$
 - c) $\vec{v} = \langle -6, 3, 2 \rangle, \ \vec{w} = \langle 1, -5, 3 \rangle.$
- 2. Find formulas for the vector and scalar projections of a vector \vec{v} onto \vec{w} involving the cosine of the angle θ between \vec{v} and \vec{w} .

4 Cross Product Computations

Find the cross products $\vec{v} \times \vec{w}$ of the following pairs of vectors.

- 1. $\vec{v} = \langle 2, 3, 1 \rangle, \ \vec{w} = \langle -1, 2, 3 \rangle.$
- 2. $\vec{v} = 6\vec{i} 4\vec{j} 3\vec{j}, \ \vec{w} = 4\vec{i} + \vec{j}.$
- 3. \vec{v} pointing a distance 5 units in the positive x-direction, \vec{w} a unit vector lying in the first quadrant of the xy-plane and making an angle of $\pi/4$ with the x-axis.

5 Cross Product Concepts and Applications

- 1. Given vectors \vec{v} and \vec{w} , find an identity which relates the four quantities $|\vec{v}|, |\vec{w}|, |\vec{v} \times \vec{w}|$, and $|\vec{v} \cdot \vec{w}|$. (Hint: Consider any relevant trigonometric identities.)
- 2. Let \vec{u} and \vec{v} be nonzero vectors with $\vec{u} \times \vec{v} = \vec{0}$. What can you say about the relationship between \vec{u} and \vec{v} ?
- 3. Find the area of the triangle with two sides given by the vectors $\vec{v} = \langle 1, 2 \rangle$ and $\vec{w} = \langle -3, 4 \rangle$.

6 Challenge: BAC-CAB

Prove the "BAC-CAB" / "double-crossing" rule:

$$\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(\vec{a} \cdot \vec{c}) - \vec{c}(\vec{a} \cdot \vec{b}).$$

(NOTE: Typically scalars such as $\vec{a} \cdot \vec{c}$ are written on the left in scalar multiplication. This formula is a rare exception and is written this way because "BAC-CAB" is easier to remember than "ACB-ABC.")

7 True/False

Supply convincing reasoning for your answer.

- (a) T F If you take a cross product of two vectors lying in the xy-plane, your result will point along the z-axis.
- (b) T F The cross product makes sense for vectors in any number of dimensions.
- (c) T F The absolute value of the scalar projection of a vector \vec{v} onto another vector \vec{w} is equal to the norm of the vector projection of \vec{v} onto \vec{w} .
- (d) T F The cross product is associative: $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$.
- (e) T F The dot and cross products satisfy $\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{b}) \times \vec{c}$.

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.